Part Number Hot Search : 
SM16G45A FR302G 5KE120A ADP5063 SP320 NTE7200 MRF422 54603
Product Description
Full Text Search
 

To Download MAX2039 Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
 J
/0 0
19-3468; Rev 0; 10/04
High-Linearity, 1700MHz to 2200MHz Upconversion/ Downconversion Mixer with LO Buffer/Switch
General Description
The MAX2039 high-linearity passive upconverter or downconverter mixer is designed to provide 7.3dB NF and a 7.1dB conversion loss for an RF frequency range of 1700MHz to 2200MHz to support UMTS/WCDMA, DCS, and PCS base-station transmitter or receiver applications. The IIP3 is typically +34.5dBm and +33.5dBm for downconversion and upconversion operation, respectively. With an LO frequency range of 1500MHz to 2000MHz, this particular mixer is ideal for low-side LO injection architectures. (For a pin-to-pincompatible mixer meant for high-side LO injection, contact the factory.) In addition to offering excellent linearity and noise performance, the MAX2039 also yields a high level of component integration. This device includes a double-balanced passive mixer core, a dual-input LO selectable switch, and an LO buffer. On-chip baluns are also integrated to allow for a single-ended RF input for downconversion (or RF output for upconversion), and single-ended LO inputs. The MAX2039 requires a nominal LO drive of 0dBm, and supply current is guaranteed to be below 135mA. The MAX2039 is pin compatible with the MAX2031 815MHz to 995MHz mixer, making this family of passive upconverters and downconverters ideal for applications where a common PC board layout is used for both frequency bands. The MAX2039 is available in a compact 20-pin thin QFN package (5mm x 5mm) with an exposed paddle. Electrical performance is guaranteed over the extended -40C to +85C temperature range.
Features
1700MHz to 2200MHz RF Frequency Range 1500MHz to 2000MHz LO Frequency Range 1900MHz to 2400MHz LO Frequency Range (Contact Factory) DC to 350MHz IF Frequency Range 7.1dB Conversion Loss +34.5dBm Input IP3 (Downconversion) +24.4dBm Input 1dB Compression Point 7.3dB Noise Figure Integrated LO Buffer Integrated RF and LO Baluns Low -3dBm to +3dBm LO Drive Built-In SPDT LO Switch with 45dB LO1 to LO2 Isolation and 50ns Switching Time Pin Compatible with the MAX2031 815MHz to 995MHz Mixer External Current-Setting Resistor Provides Option for Operating Mixer in Reduced-Power/ReducedPerformance Mode Lead-Free Package Available
MAX2039
Ordering Information
PART TEMP RANGE PIN-PACKAGE 20 Thin QFN-EP* -40C to +85C (5mm x 5mm) bulk 20 Thin QFN-EP* -40C to +85C (5mm x 5mm) T/R PKG CODE T2055-3
Applications
UMTS/WCDMA Base Stations DCS1800/PCS1900 EDGE Base Stations cdmaOneTM and cdma2000(R) Base Stations PHS/PAS Base Stations Predistortion Receivers Fixed Broadband Wireless Access Wireless Local Loop Private Mobile Radio Military Systems Microwave Links Digital and Spread-Spectrum Communication Systems
cdmaOne is a trademark of CDMA Development Group. cdma2000 is a registered trademark of Telecommunications Industry Association.
MAX2039ETP
MAX2039ETP-T
T2055-3
20 Thin QFN-EP* (5mm x 5mm) MAX2039ETP+D -40C to +85C lead-free bulk 20 Thin QFN-EP* (5mm x 5mm) MAX2039ETP+TD -40C to +85C lead-free T/R
T2055-3
T2055-3
* EP = Exposed paddle. + = Lead free. D = Dry pack.
Pin Configuration and Typical Application Circuit appear at end of data sheet. ________________________________________________________________ Maxim Integrated Products 1
For pricing, delivery, and ordering information, please contact Maxim/Dallas Direct! at 1-888-629-4642, or visit Maxim's website at www.maxim-ic.com.
High-Linearity, 1700MHz to 2200MHz Upconversion/ Downconversion Mixer with LO Buffer/Switch MAX2039
ABSOLUTE MAXIMUM RATINGS
VCC to GND ...........................................................-0.3V to +5.5V TAP, LOBIAS, LOSEL to GND ....................-0.3V to (VCC + 0.3V) LO1, LO2, IF+, IF- to GND ....................................-0.3V to +0.3V RF, IF, LO1, LO2 Input Power ........................................+15dBm RF (RF is DC shorted to GND through a balun) .................50mA Continuous Power Dissipation 20-Pin QFN-EP (derate 20mW/C above TA = +70C) ....2.2W JA .................................................................................+33C/W JC ...................................................................................+8C/W Operating Temperature Range (Note A) ....TC = -40C to +85C Junction Temperature ......................................................+150C Storage Temperature Range .............................-65C to +165C Lead Temperature (soldering, 10s) .................................+300C
Note A: TC is the temperature on the exposed paddle of the package.
Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
DC ELECTRICAL CHARACTERISTICS
(MAX2039 Typical Application Circuit, VCC = +4.75V to +5.25V, TC = -40C to +85C, no RF signals applied, IF+ and IF- DC grounded through a transformer. Typical values are at VCC = +5V, TC = +25C, unless otherwise noted.)
PARAMETER Supply Voltage Supply Current LO_SEL Input Logic Low LO_SEL Input Logic High SYMBOL VCC ICC VIL VIH 2 CONDITIONS MIN 4.75 TYP 5.00 104 MAX 5.25 135 0.8 UNITS V mA V V
AC ELECTRICAL CHARACTERISTICS (DOWNCONVERTER OPERATION)
(MAX2039 Typical Application Circuit, VCC = +4.75V to +5.25V, TC = -40C to +85C, RF and LO ports are driven from 50 sources, PLO = -3dBm to +3dBm, PRF = 0dBm, fRF = 1700MHz to 2200MHz, fLO = 1500MHz to 2000MHz, fIF = 200MHz, fRF > fLO, unless otherwise noted. Typical values are at VCC = +5V, PRF = 0dBm, PLO = 0dBm, fRF = 1900MHz, fLO = 1700MHz, fIF = 200MHz, TC = +25C, unless otherwise noted.) (Notes 1, 2)
PARAMETER RF Frequency Range LO Frequency Range IF Frequency Range Conversion Loss Loss Variation Over Temperature Input Compression Point P1dB SYMBOL fRF fLO fIF LC (Note 3) (Note 3) (Contact factory) External IF transformer dependent PRF < +2dBm TC = -40C to +85C (Note 4) Two tones: fRF1 = 2000MHz, fRF2 = 2001MHz, PRF = +5dBm/tone, fLO = 1800MHz, PLO = 0dBm TC = -40C to +85C NF Single sideband CONDITIONS MIN 1700 1500 1900 DC 7.1 0.0075 24.4 TYP MAX 2200 2000 2400 350 UNITS MHz MHz MHz dB dB/C dBm
Input Third-Order Intercept Point
IIP3
31
34.5
dBm
Input IP3 Variation Over Temperature Noise Figure
0.75 7.3
dB dB
2
_______________________________________________________________________________________
High-Linearity, 1700MHz to 2200MHz Upconversion/ Downconversion Mixer with LO Buffer/Switch
AC ELECTRICAL CHARACTERISTICS (DOWNCONVERTER OPERATION) (continued)
(MAX2039 Typical Application Circuit, VCC = +4.75V to +5.25V, TC = -40C to +85C, RF and LO ports are driven from 50 sources, PLO = -3dBm to +3dBm, PRF = 0dBm, fRF = 1700MHz to 2200MHz, fLO = 1500MHz to 2000MHz, fIF = 200MHz, fRF > fLO, unless otherwise noted. Typical values are at VCC = +5V, PRF = 0dBm, PLO = 0dBm, fRF = 1900MHz, fLO = 1700MHz, fIF = 200MHz, TC = +25C, unless otherwise noted.) (Notes 1, 2)
PARAMETER Noise Figure Under-Blocking LO Drive 2x2 Spurious Response at IF 3x3 LO1 to LO2 Isolation (Note 1) Maximum LO Leakage at RF Port Maximum LO Leakage at IF Port Minimum RF-to-IF Isolation LO Switching Time RF Port Return Loss LO Port Return Loss IF Port Return Loss LO port selected, LO and IF terminated LO port unselected, LO and IF terminated LO driven at 0dBm, RF terminated into 50 50% of LOSEL to IF settled to within 2 2RF - 2LO, PRF = 0dBm 3RF - 3LO, PRF = 0dBm LO2 selected, 1500MHz < fLO < 1700MHz LO1 selected, 1500MHz < fLO < 1700MHz PLO = +3dBm PLO = +3dBm 40 40 SYMBOL CONDITIONS PRF = 5dBm, fRF = 2000MHz, fLO = 1810MHz, fblock = 2100MHz (Note 5) -3 73 dBc 72 52 45 -18 -27.5 35 50 18 16 26 20 dB dBm dBm dB ns dB dB dB MIN TYP 19 +3 MAX UNITS dB dBm
MAX2039 MAX2039
_______________________________________________________________________________________
3
High-Linearity, 1700MHz to 2200MHz Upconversion/ Downconversion Mixer with LO Buffer/Switch MAX2039
AC ELECTRICAL CHARACTERISTICS (UPCONVERTER OPERATION)
(MAX2039 Typical Application Circuit, VCC = +4.75V to +5.25V, TC = -40C to +85C, PLO = -3dBm to +3dBm, PIF = 0dBm, fRF = 1700MHz to 2200MHz, fLO = 1500MHz to 2000MHz, fIF = 200MHz, fRF = fLO + fIF, unless otherwise noted. Typical values are at VCC = +5V, PIF = 0dBm, PLO = 0dBm, fRF = 1900MHz, fLO = 1700MHz, fIF = 200MHz, TC = +25C, unless otherwise noted.) (Note 2)
PARAMETER Input Compression Point SYMBOL P1dB (Note 4) Two tones: fIF1 = 200MHz, fIF2 = 210MHz, PIF = +5dBm/tone, fLO = 1940MHz, PLO = 0dBm LO - 2IF LO + 2IF LO - 3IF LO + 3IF POUT = 0dBm CONDITIONS MIN TYP 24.4 MAX UNITS dBm
Input Third-Order Intercept Point
IIP3
29.5
33.5
dBm
LO 2IF Spur LO 3IF Spur Output Noise Floor
67 63 72 76 -160
dBc dBc dBm/ Hz
Note 1: Guaranteed by design and characterization. Note 2: All limits include external component losses. Output measurements taken at IF port for downconverter and RF port for upconverter from the Typical Application Circuit. Note 3: Operation outside this range is possible, but with degraded performance of some parameters. Note 4: Compression point characterized. It is advisable not to continuously operate the mixer RF or IF input above +15dBm. Note 5: Measured with external LO source noise filtered such that the noise floor is -174dBm/Hz. This specification reflects the effects of all SNR degradations in the mixer, including the LO noise as defined in Maxim Application Note 2021.
4
_______________________________________________________________________________________
High-Linearity, 1700MHz to 2200MHz Upconversion/ Downconversion Mixer with LO Buffer/Switch MAX2039
Typical Operating Characteristics
(MAX2039 Typical Application Circuit, VCC = +5.0V, PLO = 0dBm, PRF = 0dBm, fRF > fLO , fIF = 200MHz, R1 = 549, unless otherwise noted.)
Downconverter Curves
CONVERSION LOSS vs. RF FREQUENCY
MAX2039 toc01
CONVERSION LOSS vs. RF FREQUENCY
MAX2039 toc02
CONVERSION LOSS vs. RF FREQUENCY
MAX2039 toc03
9 TC = +85C 8 CONVERSION LOSS (dB)
9
9
8 CONVERSION LOSS (dB)
8 CONVERSION LOSS (dB)
7 TC = +25C 6 TC = -35C
7 PLO = -3dBm, 0dBm, +3dBm 6
7 VCC = 4.75V, 5.0V, 5.25V 6
5
5
5
4 1500 1650 1800 1950 2100 2250 2400 RF FREQUENCY (MHz)
4 1500 1650 1800 1950 2100 2250 2400 RF FREQUENCY (MHz)
4 1500 1650 1800 1950 2100 2250 2400 RF FREQUENCY (MHz)
INPUT IP3 vs. RF FREQUENCY
MAX2039 toc04
INPUT IP3 vs. RF FREQUENCY
MAX2039 toc05
INPUT IP3 vs. RF FREQUENCY
VCC = 5.25V 37 35 33 31 29 27 25 VCC = 5.0V VCC = 4.75V
MAX2039 toc06
39 TC = +25C 37 35 33 TC = -35C 31 29 27 25 1500 1650 1800 1950 2100 2250 TC = +85C
39 37 35 33 PLO = +3dBm 31 29 27 25 PLO = -3dBm, 0dBm
39
INPUT IP3 (dBm)
INPUT IP3 (dBm)
2400
1500
1650
1800
1950
2100
2250
INPUT IP3 (dBm)
2400
1500
1650
1800
1950
2100
2250
2400
RF FREQUENCY (MHz)
RF FREQUENCY (MHz)
RF FREQUENCY (MHz)
NOISE FIGURE vs. RF FREQUENCY
MAX2039 toc07
NOISE FIGURE vs. RF FREQUENCY
MAX2039 toc08
NOISE FIGURE vs. RF FREQUENCY
MAX2039 toc09
10 TC = +85C 9 NOISE FIGURE (dB)
10
10
9 NOISE FIGURE (dB) PLO = -3dBm 8
9 NOISE FIGURE (dB) VCC = 5.25V 8
8
7 TC = +25C 6 TC = -35C
7 PLO = +3dBm 6 PLO = 0dBm
7 VCC = 4.75V 6 VCC = 5.0V
5 1700 1800 1900 2000 2100 2200 2300 2400 RF FREQUENCY (MHz)
5 1700 1800 1900 2000 2100 2200 2300 2400 RF FREQUENCY (MHz)
5 1700 1800 1900 2000 2100 2200 2300 2400 RF FREQUENCY (MHz)
_______________________________________________________________________________________
5
High-Linearity, 1700MHz to 2200MHz Upconversion/ Downconversion Mixer with LO Buffer/Switch MAX2039
Typical Operating Characteristics (continued)
(MAX2039 Typical Application Circuit, VCC = +5.0V, PLO = 0dBm, PRF = 0dBm, fRF > fLO , fIF = 200MHz, R1 = 549, unless otherwise noted.)
Downconverter Curves
2RF - 2LO RESPONSE vs. RF FREQUENCY
MAX2039 toc10
2RF - 2LO RESPONSE vs. RF FREQUENCY
MAX2039 toc11
2RF - 2LO RESPONSE vs. RF FREQUENCY
PRF = 0dBm
MAX2039 toc12 MAX2039 toc18 MAX2039 toc15
80 75 2RF - 2LO RESPONSE (dBc) 70 65 60 55 50 45 1500 1650 1800 1950 2100 TC = +85C TC = +25C
PRF = 0dBm TC = -35C
80 75 2RF - 2LO RESPONSE (dBc) 70 65 60 55 50 45 PLO = -3dBm
PRF = 0dBm PLO = +3dBm
80 75 2RF - 2LO RESPONSE (dBc) 70 65 60 55 50 45
VCC = 4.75V, 5.0V, 5.25V
PLO = 0dBm
2250
2400
1500
1650
1800
1950
2100
2250
2400
1500
1650
1800
1950
2100
2250
2400
RF FREQUENCY (MHz)
RF FREQUENCY (MHz)
RF FREQUENCY (MHz)
3RF - 3LO RESPONSE vs. RF FREQUENCY
MAX2039 toc13
3RF - 3LO RESPONSE vs. RF FREQUENCY
PRF = 0dBm
MAX2039 toc14
3RF - 3LO RESPONSE vs. RF FREQUENCY
85 80 3RF - 3LO RESPONSE (dBc) 75 70 65 60 55 50 45 VCC = 5.0V VCC = 4.75V VCC = 5.25V PRF = 0dBm
85 80 3RF - 3LO RESPONSE (dBc) 75 70 65 60 55 50 45 1500 1650 1800 1950 2100 TC = +25C TC = +85C
PRF = 0dBm
85 80 3RF - 3LO RESPONSE (dBc) 75 70 65 60 55 50 45
PLO = -3dBm, 0dBm, +3dBm
TC = -35C
2250
2400
1500
1650
1800
1950
2100
2250
2400
1500
1650
1800
1950
2100
2250
2400
RF FREQUENCY (MHz)
RF FREQUENCY (MHz)
RF FREQUENCY (MHz)
INPUT P1dB vs. RF FREQUENCY
MAX2039 toc16
INPUT P1dB vs. RF FREQUENCY
MAX2039 toc17
INPUT P1dB vs. RF FREQUENCY
27 26 25 INPUT P1dB (dBm) 24 23 22 21 20 19 18 17 VCC = 4.75V VCC = 5.25V VCC = 5.0V
27 26 25 INPUT P1dB (dBm) 24 23 22 21 20 19 18 17 1500 1650 1800 1950 2100 2250 TC = -35C TC = +85C TC = +25C
27 26 25 INPUT P1dB (dBm) 24 23 22 21 20 19 18 17 PLO = -3dBm, 0dBm, +3dBm
2400
1500
1650
1800
1950
2100
2250
2400
1500
1650
1800
1950
2100
2250
2400
RF FREQUENCY (MHz)
RF FREQUENCY (MHz)
RF FREQUENCY (MHz)
6
_______________________________________________________________________________________
High-Linearity, 1700MHz to 2200MHz Upconversion/ Downconversion Mixer with LO Buffer/Switch MAX2039
Typical Operating Characteristics (continued)
(MAX2039 Typical Application Circuit, VCC = +5.0V, PLO = 0dBm, PRF = 0dBm, fRF > fLO , fIF = 200MHz, R1 = 549, unless otherwise noted.)
Downconverter Curves
LO SWITCH ISOLATION vs. LO FREQUENCY
MAX2039 toc 19
LO SWITCH ISOLATION vs. LO FREQUENCY
MAX2039 toc 20
LO SWITCH ISOLATION vs. LO FREQUENCY
MAX2039 toc 21
55
55
55
LO SWITCH ISOLATION (dB)
LO SWITCH ISOLATION (dB)
50
TC = -35C
50
LO SWITCH ISOLATION (dB)
PLO = 0dBm, +3dBm
50
45 TC = +85C 40 TC = +25C
45 PLO = -3dBm 40
45 VCC = 4.75V, 5.0V, 5.25V 40
35 1300 1450 1600 1750 1900 2050 2200 LO FREQUENCY (MHz)
35 1300 1450 1600 1750 1900 2050 2200 LO FREQUENCY (MHz)
35 1300 1450 1600 1750 1900 2050 2200 LO FREQUENCY (MHz)
LO LEAKAGE AT IF PORT vs. LO FREQUENCY
MAX2039 toc22
LO LEAKAGE AT IF PORT vs. LO FREQUENCY
MAX2039 toc23
LO LEAKAGE AT IF PORT vs. LO FREQUENCY
MAX2039 toc24
-10 -15 LO LEAKAGE (dBm) -20 -25 -30 TC = +85C -35 -40 -45 1300 1450 1600 1750 1900 2050 TC = +25C TC = -35C
-10 -15 LO LEAKAGE (dBm) -20 -25 -30 -35 -40 -45 PLO = -3dBm 1300 1450 1600 1750 1900 2050 PLO = +3dBm PLO = 0dBm
-10 -15 LO LEAKAGE (dBm) -20 -25 -30 VCC = 4.75V -35 -40 -45 VCC = 5.25V VCC = 5.0V
2200
2200
1300
1450
1600
1750
1900
2050
2200
LO FREQUENCY (MHz)
LO FREQUENCY (MHz)
LO FREQUENCY (MHz)
LO LEAKAGE AT RF PORT vs. LO FREQUENCY
MAX2039 toc25
LO LEAKAGE AT RF PORT vs. LO FREQUENCY
MAX2039 toc26
LO LEAKAGE AT RF PORT vs. LO FREQUENCY
MAX2039 toc27
-10 LO LEAKAGE AT RF PORT (dBm)
-10 LO LEAKAGE AT RF PORT (dBm)
-10 LO LEAKAGE AT RF PORT (dBm)
-15
TC = +25C
TC = +85C
-15
-15
VCC = 5.25V
VCC = 5.0V
-20 TC = -35C -25
-20 PLO = -3dBm, 0dBm, +3dBm -25
-20 VCC = 4.75V -25
-30 1300 1450 1600 1750 1900 2050 2200 LO FREQUENCY (MHz)
-30 1300 1450 1600 1750 1900 2050 2200 LO FREQUENCY (MHz)
-30 1300 1450 1600 1750 1900 2050 2200 LO FREQUENCY (MHz)
_______________________________________________________________________________________
7
High-Linearity, 1700MHz to 2200MHz Upconversion/ Downconversion Mixer with LO Buffer/Switch MAX2039
Typical Operating Characteristics (continued)
(MAX2039 Typical Application Circuit, VCC = +5.0V, PLO = 0dBm, PRF = 0dBm, fRF > fLO , fIF = 200MHz, R1 = 549, unless otherwise noted.)
Downconverter Curves
RF-TO-IF ISOLATION vs. RF FREQUENCY
MAX2039 toc28
RF-TO-IF ISOLATION vs. RF FREQUENCY
MAX2039 toc29
RF-TO-IF ISOLATION vs. RF FREQUENCY
MAX2039 toc30
50 45 RF-TO-IF ISOLATION (dB) 40 35 30 25 20 1500 1650 1800 1950 2100 2250 TC = +85C
50 45 RF-TO-IF ISOLATION (dB) 40 35 30 25 20
50 45 RF-TO-IF ISOLATION (dB) 40 35 30 25 20
TC = -35C
TC = +25C
PLO = -3dBm, 0dBm, +3dBm
VCC = 4.75V, 5.0V, 5.25V
2400
1500
1650
1800
1950
2100
2250
2400
1500
1650
1800
1950
2100
2250
2400
RF FREQUENCY (MHz)
RF FREQUENCY (MHz)
RF FREQUENCY (MHz)
RF PORT RETURN LOSS vs. RF FREQUENCY
MAX2039 toc31
IF PORT RETURN LOSS vs. IF FREQUENCY
5 IF PORT RETURN LOSS (dB) 10 15 20 25 30 35 40 VCC = 4.75V, 5.0V, 5.25V
MAX2039 toc32
LO SELECTED RETURN LOSS vs. LO FREQUENCY
5 10 15 20 25 30 35 40 1300 1500 1700 1900 2100 2300 PLO = -3dBm PLO = 0dBm PLO = +3dBm
MAX2039 toc33
0 5 RF PORT RETURN LOSS (dB) 10 15 20 25 30 35 40 1500 1650 1800 1950 2100 2250 PLO = -3dBm, 0dBm, +3dBm
0
0 LO SELECTED RETURN LOSS (dB)
45 2400 50 50 100 150 200 250 300 350 IF FREQUENCY (MHz)
RF FREQUENCY (MHz)
LO FREQUENCY (MHz)
LO UNSELECTED RETURN LOSS vs. LO FREQUENCY
MAX2039 toc34
SUPPLY CURRENT vs. TEMPERATURE (TC)
MAX2039 toc 35
0 LO UNSELECTED RETURN LOSS (dB) 10 20 30 40 50 60 1300 1500 1700 1900 2100 PLO = -3dBm, 0dBm, +3dBm
130 120 SUPPLY CUIRRENT (mA) 110 100 90 80 70 VCC = 5.0V VCC = 4.75V VCC = 5.25V
2300
-35
-15
5
25
45
65
85
LO FREQUENCY (MHz)
TEMPERATURE (C)
8
_______________________________________________________________________________________
High-Linearity, 1700MHz to 2200MHz Upconversion/ Downconversion Mixer with LO Buffer/Switch MAX2039
Typical Operating Characteristics
(MAX2039 Typical Application Circuit, VCC = +5.0V, PLO = 0dBm, PIF = 0dBm, fRF = fLO+ fIF, fIF = 200MHz, R1 = 549, unless otherwise noted.)
Upconverter Curves
CONVERSION LOSS vs. RF FREQUENCY
MAX2039 toc36
CONVERSION LOSS vs. RF FREQUENCY
MAX2039 toc37
CONVERSION LOSS vs. RF FREQUENCY
MAX2039 toc38
9 TC = +85C 8 CONVERSION LOSS (dB)
9
9
8 CONVERSION LOSS (dB)
8 CONVERSION LOSS (dB)
7 TC = +25C 6 TC = -35C
7 PLO = -3dBm, 0dBm, +3dBm 6
7 VCC = 4.75V, 5.0V, 5.25V 6
5
5
5
4 1500 1650 1800 1950 2100 2250 2400 RF FREQUENCY (MHz)
4 1500 1650 1800 1950 2100 2250 2400 RF FREQUENCY (MHz)
4 1500 1650 1800 1950 2100 2250 2400 RF FREQUENCY (MHz)
INPUT IP3 vs. RF FREQUENCY
MAX2039 toc39
INPUT IP3 vs. RF FREQUENCY
MAX2039 toc40
INPUT IP3 vs. RF FREQUENCY
MAX2039 toc41
39 37 35 33 31 29 27 25 1500 1650 1800 1950 2100 2250 TC = +25C TC = -35C TC = +85C
39 37 35 33 31 29 27 25 PLO = -3dBm, 0dBm, +3dBm
39 37 35 33 31 29 27 25 VCC = 5.0V VCC = 4.75V VCC = 5.25V
INPUT IP3 (dBm)
INPUT IP3 (dBm)
2400
1500
1650
1800
1950
2100
2250
2400
INPUT IP3 (dBm)
1500
1650
1800
1950
2100
2250
2400
RF FREQUENCY (MHz)
RF FREQUENCY (MHz)
RF FREQUENCY (MHz)
LO + 2IF REJECTION vs. RF FREQUENCY
MAX2039 toc42
LO + 2IF REJECTION vs. RF FREQUENCY
MAX2039 toc43
LO + 2IF REJECTION vs. RF FREQUENCY
PIF = 0dBm 80 LO + 2IF REJECTION (dBc) 75 70 65 60 55 50 45 1500 1650 1800 1950 2100 2250 2400 VCC = 4.75V, 5.0V, 5.25V
MAX2039 toc44
85 80 LO + 2IF REJECTION (dBc) 75 70 65 60 55 50 45
PIF = 0dBm
85 80 LO + 2IF REJECTION (dBc) 75 70 65 60 55 50 45
85
TC = +25C
PIF = 0dBm
PLO = +3dBm
TC = -35C
PLO = 0dBm
TC = +85C
PLO = -3dBm
1500
1650
1800
1950
2100
2250
2400
1500
1650
1800
1950
2100
2250
2400
RF FREQUENCY (MHz)
RF FREQUENCY (MHz)
RF FREQUENCY (MHz)
_______________________________________________________________________________________
9
High-Linearity, 1700MHz to 2200MHz Upconversion/ Downconversion Mixer with LO Buffer/Switch MAX2039
Typical Operating Characteristics (continued)
(MAX2039 Typical Application Circuit, VCC = +5.0V, PLO = 0dBm, PIF = 0dBm, fRF = fLO+ fIF, fIF = 200MHz, R1 = 549, unless otherwise noted.)
Upconverter Curves
LO - 2IF REJECTION vs. RF FREQUENCY
MAX2039 toc45
LO - 2IF REJECTION vs. RF FREQUENCY
MAX2039 toc46
LO - 2IF REJECTION vs. RF FREQUENCY
PIF = 0dBm 80 LO - 2IF REJECTION (dBc) 75 70 65 60 55 50 45 VCC = 4.75V, 5.0V, 5.25V
MAX2039 toc47 MAX2039 toc53 MAX2039 toc50
80 75 LO - 2IF REJECTION (dBc) 70 65 60 55 50 45 1500 1650 1800 1950 2100 TC = +25C
80 PLO = 0dBm 75 LO - 2IF REJECTION (dBc) 70 65 60 55 PLO = -3dBm 50 45 PLO = +3dBm
PIF = 0dBm TC = +85C
PIF = 0dBm
85
TC = -35C
2250
2400
1500
1650
1800
1950
2100
2250
2400
1500
1650
1800
1950
2100
2250
2400
RF FREQUENCY (MHz)
RF FREQUENCY (MHz)
RF FREQUENCY (MHz)
LO + 3IF REJECTION vs. RF FREQUENCY
MAX2039 toc48
LO + 3IF REJECTION vs. RF FREQUENCY
MAX2039 toc49
LO + 3IF REJECTION vs. RF FREQUENCY
90 85 LO + 3IF REJECTION (dBc) 80 75 70 65 60 55 50 1500 1650 1800 1950 2100 2250 2400 VCC = 4.75V VCC = 5.0V VCC = 5.25V PIF = 0dBm
90 85 LO + 3IF REJECTION (dBc) 80 75 70 65 60 55 50 1500 1650 1800 1950 2100 TC = -35C TC = +85C
PIF = 0dBm
90 85 LO + 3IF REJECTION (dBc) 80 75 70 65 60 55 50 PLO = 0dBm PLO = -3dBm
PIF = 0dBm
TC = +25C
PLO = +3dBm
2250
2400
1500
1650
1800
1950
2100
2250
2400
RF FREQUENCY (MHz)
RF FREQUENCY (MHz)
RF FREQUENCY (MHz)
LO - 3IF REJECTION vs. RF FREQUENCY
MAX2039 toc51
LO - 3IF REJECTION vs. RF FREQUENCY
MAX2039 toc52
LO - 3IF REJECTION vs. RF FREQUENCY
90 85 LO - 3IF REJECTION (dBc) 80 75 70 65 VCC = 4.75V 60 55 50 1500 1650 1800 1950 2100 2250 2400 VCC = 5.0V VCC = 5.25V PIF = 0dBm
90 85 LO - 3IF REJECTION (dBc) 80 75 70 65 60 55 50 1500 1650 1800 1950 2100 TC = -35C TC = +85C
PIF = 0dBm
90 85 LO - 3IF REJECTION (dBc) 80 75 70 65 60 55 50
PIF = 0dBm
TC = +25C
PLO = -3dBm, 0dBm, +3dBm
2250
2400
1500
1650
1800
1950
2100
2250
2400
RF FREQUENCY (MHz)
RF FREQUENCY (MHz)
RF FREQUENCY (MHz)
10
______________________________________________________________________________________
High-Linearity, 1700MHz to 2200MHz Upconversion/ Downconversion Mixer with LO Buffer/Switch MAX2039
Typical Operating Characteristics (continued)
(MAX2039 Typical Application Circuit, VCC = +5.0V, PLO = 0dBm, PIF = 0dBm, fRF = fLO+ fIF, fIF = 200MHz, R1 = 549, unless otherwise noted.)
Upconverter Curves
LO LEAKAGE AT RF PORT vs. LO FREQUENCY
MAX2039 toc54
LO LEAKAGE AT RF PORT vs. LO FREQUENCY
MAX2039 toc55
LO LEAKAGE AT RF PORT vs. LO FREQUENCY
MAX2039 toc56
-10 LO LEAKAGE AT RF PORT (dBm)
-10 LO LEAKAGE AT RF PORT (dBm)
-10 LO LEAKAGE AT RF PORT (dBm) VCC = 5.25V -15
-15
TC = +25C, +85C
-15
-20 TC = -35C -25
-20 PLO = -3dBm, 0dBm, +3dBm -25
-20 VCC = 4.75V -25 VCC = 5.0V
-30 1300 1450 1600 1750 1900 2050 2200 LO FREQUENCY (MHz)
-30 1300 1450 1600 1750 1900 2050 2200 LO FREQUENCY (MHz)
-30 1300 1450 1600 1750 1900 2050 2200 LO FREQUENCY (MHz)
IF LEAKAGE AT RF vs. RF FREQUENCY
MAX2039 toc57
IF LEAKAGE AT RF vs. RF FREQUENCY
MAX2039 toc58
IF LEAKAGE AT RF vs. RF FREQUENCY
-45 -50 IF LEAKAGE (dBm) -55 -60 -65 -70 -75 VCC = 4.75V, 5.0V, 5.25V
MAX2039 toc59
-40
-40
-40
-50 IF LEAKAGE (dBm)
-50 IF LEAKAGE (dBm)
-60 TC = +25C
-60 PLO = -3dBm, 0dBm, +3dBm -70
-70
TC = +85C
-80 TC = -35C -90 1500 1650 1800 1950 2100 2250 2400 RF FREQUENCY (MHz)
-80
-80 -85
-90 1500 1650 1800 1950 2100 2250 2400 RF FREQUENCY (MHz)
-90 1500 1650 1800 1950 2100 2250 2400 RF FREQUENCY (MHz)
______________________________________________________________________________________
11
High-Linearity, 1700MHz to 2200MHz Upconversion/ Downconversion Mixer with LO Buffer/Switch MAX2039
Pin Description
PIN 1, 6, 8, 14 2 3 4, 5, 10, 12, 13, 16, 17, 20 7 9 11 15 18, 19 EP NAME VCC RF TAP FUNCTION Power-Supply Connection. Bypass each VCC pin to GND with capacitors as shown in the Typical Application Circuit. Single-Ended 50 RF Input/Output. This port is internally matched and DC shorted to GND through a balun. Center Tap of the Internal RF Balun. Bypass to GND with capacitors close to the IC, as shown in the Typical Application Circuit. Ground Bias Resistor for Internal LO Buffer. Connect a 549 1% resistor from LOBIAS to the power supply. Local Oscillator Select. Logic control input for selecting LO1 or LO2. Local Oscillator Input 1. Drive LOSEL low to select LO1. Local Oscillator Input 2. Drive LOSEL high to select LO2. Differential IF Input/Outputs Exposed Ground Paddle. Solder the exposed paddle to the ground plane using multiple vias.
GND LOBIAS LOSEL LO1 LO2 IF-, IF+ GND
Detailed Description
The MAX2039 can operate either as a downconverter or an upconverter mixer that provides 7.1dB of conversion loss with a typical 7.3dB noise figure. IIP3 is +33.5dBm for upconversion and +34.5dBm for downconversion. The integrated baluns and matching circuitry allow for 50 single-ended interfaces to the RF port and two LO ports. The RF port can be used as an input for downconversion or an output for upconversion. A single-pole, double-throw (SPDT) switch provides 50ns switching time between the two LO inputs with 45dB of LO-to-LO isolation. Furthermore, the integrated LO buffer provides a high drive level to the mixer core, reducing the LO drive required at the MAX2039's inputs to a range of -3dBm to +3dBm. The IF port incorporates a differential output for downconversion, which is ideal for providing enhanced IIP2 performance. For upconversion, the IF port is a differential input. Specifications are guaranteed over broad frequency ranges to allow for use in UMTS, cdma2000, and 2G/2.5G/3G DCS1800, and PCS1900 base stations. The MAX2039 is specified to operate over an RF frequency range of 1700MHz to 2200MHz, an LO frequency range of 1500MHz to 2000MHz, and an IF frequency range of DC to 350MHz. Operation beyond these ranges is possible; see the Typical Operating Characteristics for additional details.
12
This device can operate in high-side LO injection applications with an extended LO range, but performance degrades as fLO continues to increase. See the Typical Operating Characteristics for measurements taken with fLO up to 2200MHz. For a device with better high-side LO injection performance, contact the factory.
RF Port and Balun
For using the MAX2039 as a downconverter, the RF input is internally matched to 50, requiring no external matching components. A DC-blocking capacitor is required since the input is internally DC shorted to ground through the on-chip balun. The RF return loss is typically 18dB over the entire 1700MHz to 2200MHz RF frequency range. For upconverter operation, the RF port is a singleended output similarly matched to 50.
LO Inputs, Buffer, and Balun
The MAX2039 can be used for either high-side or lowside injection applications with a 1500MHz to 2000MHz LO frequency range. For a device with a 1900MHz to 2400MHz LO frequency range, contact the factory. As an added feature, the MAX2039 includes an internal LO SPDT switch that can be used for frequency-hopping applications. The switch selects one of the two singleended LO ports, allowing the external oscillator to settle on a particular frequency before it is switched in. LO switching time is typically less than 50ns, which is more than adequate for virtually all GSM applications.
______________________________________________________________________________________
High-Linearity, 1700MHz to 2200MHz Upconversion/ Downconversion Mixer with LO Buffer/Switch
If frequency hopping is not employed, set the switch to either of the LO inputs. The switch is controlled by a digital input (LOSEL): logic high selects LO2, logic low selects LO1. In order to avoid damage to the part, voltage MUST be applied to VCC before digital logic is applied to LOSEL (see the Absolute Maximum Ratings). LO1 and LO2 inputs are internally matched to 50, requiring only a 22pF DC-blocking capacitor. A two-stage internal LO buffer allows a wide-input power range for the LO drive. All guaranteed specifications are for an LO signal power from -3dBm to +3dBm. The on-chip low-loss balun, along with an LO buffer, drives the double-balanced mixer. All interfacing and matching components from the LO inputs to the IF outputs are integrated on chip.
MAX2039
Table 1. Component List Referring to the Typical Application Circuit
COMPONENT C1 C4 C2, C6, C7, C8, C10, C12 C3, C5, C9, C11 R1 T1 U1 VALUE 4pF 10pF 22pF 0.01F 549 1:1 Balun DESCRIPTION Microwave capacitor (0603) Microwave capacitor (0603) Microwave capacitors (0603) Microwave capacitors (0603) 1% resistor (0603) IF balun with DC grounded ports
MAX2039 Maxim IC
High-Linearity Mixer
The core of the MAX2039 is a double-balanced, highperformance passive mixer. Exceptional linearity is provided by the large LO swing from the on-chip LO buffer.
transforms this impedance to a 50 single-ended output (see the Typical Application Circuit).
Bias Resistor
Bias current for the LO buffer is optimized by fine tuning resistor R1. If reduced current is required at the expense of performance, contact the factory for details. If the 1% bias resistor values are not readily available, substitute standard 5% values.
Differential IF
The MAX2039 mixer has an IF frequency range of DC to 350MHz. Note that these differential ports are ideal for providing enhanced IIP2 performance. Single-ended IF applications require a 1:1 balun to transform the 50 differential IF impedance to a 50 single-ended system. After the balun, the IF return loss is better than 15dB. The differential IF is used as an input port for upconverter operation. The user can use a differential IF amplifier following the mixer but a DC block is required on both IF pins. In this configuration, the IF+ and IF- pins need to be returned to ground through a high resistance (about 1k). This ground return can also be accomplished by grounding the RF TAP (pin 3) and AC-coupling the IF+ and IF- ports (pins 19 and 18).
Layout Considerations
A properly designed PC board is an essential part of any RF/microwave circuit. Keep RF signal lines as short as possible to reduce losses, radiation, and inductance. For the best performance, route the ground pin traces directly to the exposed pad under the package. The PC board exposed pad MUST be connected to the ground plane of the PC board. It is suggested that multiple vias be used to connect this pad to the lower-level ground planes. This method provides a good RF/thermal conduction path for the device. Solder the exposed pad on the bottom of the device package to the PC board. The MAX2039 Evaluation Kit can be used as a reference for board layout. Gerber files are available upon request at www.maxim-ic.com.
Applications Information
Input and Output Matching
The RF and LO inputs are internally matched to 50. No matching components are required. Return loss at the RF port is typically 18dB over the entire input range (1700MHz to 2200MHz) and return loss at the LO ports is typically 16dB (1500MHz to 2000MHz). RF and LO inputs require only DC-blocking capacitors for interfacing. The IF output impedance is 50 (differential). For evaluation, an external low-loss 1:1 (impedance ratio) balun
Power-Supply Bypassing
Proper voltage-supply bypassing is essential for highfrequency circuit stability. Bypass each VCC pin and TAP with the capacitors shown in the Typical Application Circuit; see Table 1. Place the TAP bypass capacitor to ground within 100 mils of the TAP pin.
______________________________________________________________________________________
13
High-Linearity, 1700MHz to 2200MHz Upconversion/ Downconversion Mixer with LO Buffer/Switch MAX2039
Typical Application Circuit
T1 1 4
IF
3
5
GND
GND 17
VCC
20
19
18
C3
C2
VCC
16
GND
IF+
IF-
1
15
LO2
VCC
C12
LO2 INPUT
VCC
C1 RF C5
RF
2 3
MAX2039
14 13
C11 TAP GND GND C10 GND 5 11 LO1
C4
GND
4
12
LO1 INPUT
R1
VCC
C6
C7
VCC
LOBIAS
LOSEL
GND
VCC
VCC
10 LOSEL INPUT
7
8
6
C9
C8
Exposed Pad RF/Thermal Considerations
The EP of the MAX2039's 20-pin thin QFN-EP package provides a low thermal-resistance path to the die. It is important that the PC board on which the MAX2039 is mounted be designed to conduct heat from the EP. In addition, provide the EP with a low-inductance path to electrical ground. The EP MUST be soldered to a ground plane on the PC board, either directly or through an array of plated via holes. TRANSISTOR COUNT: 1212 PROCESS: SiGe BiCMOS
9
Chip Information
14
______________________________________________________________________________________
High-Linearity, 1700MHz to 2200MHz Upconversion/ Downconversion Mixer with LO Buffer/Switch
Pin Configuration
GND GND GND
MAX2039
TOP VIEW
IF+
20
19
18
IF-
17
16
VCC
1
15
LO2
MAX2039
RF TAP 2 3 14 13
VCC
GND
GND GND
4 5
12
GND LO1
11
______________________________________________________________________________________
LOBIAS
LOSEL
GND 10
7
8
VCC
6
VCC
9
15
High-Linearity, 1700MHz to 2200MHz Upconversion/ Downconversion Mixer with LO Buffer/Switch MAX2039
Package Information
(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information, go to www.maxim-ic.com/packages.)
QFN THIN.EPS
L
0.15 C A
D2
C L
D D/2
0.15 C B
b D2/2
0.10 M C A B
k
MARKING
XXXXX
E/2 E2/2 E (NE-1) X e
C L
E2
k L
PIN # 1 I.D.
DETAIL A
e (ND-1) X e
PIN # 1 I.D. 0.35x45 DETAIL B
e
L1
L
C L
C L
L
e 0.10 C A 0.08 C
e
C
A1 A3 PACKAGE OUTLINE, 16, 20, 28, 32L THIN QFN, 5x5x0.8mm
-DRAWING NOT TO SCALE-
21-0140
F
1
2
COMMON DIMENSIONS PKG. 16L 5x5 20L 5x5 28L 5x5 32L 5x5 SYMBOL MIN. NOM. MAX. MIN. NOM. MAX. MIN. NOM. MAX. MIN. NOM. MAX. A A1 A3 b D E e k L L1 N ND NE JEDEC 0.70 0.75 0.80 0.70 0.75 0.80 0.70 0.75 0.80 0.70 0.75 0.80 0 0.02 0.05 0.20 REF. 0 0.02 0.05 0.20 REF. 0 0.02 0.05 0.20 REF. 0 0.02 0.05 0.20 REF. PKG. CODES T1655-1 T1655-2 T1655N-1 T2055-2 T2055-3 T2055-4 T2055-5 T2855-1 T2855-2 T2855-3 T2855-4 T2855-5 T2855-6 T2855-7 T2855-8 T2855N-1 T3255-2 T3255-3 T3255-4 T3255N-1
EXPOSED PAD VARIATIONS
D2
MIN. NOM. MAX. MIN.
E2
NOM. MAX.
L
0.15
DOWN BONDS ALLOWED
3.00 3.00 3.00 3.00 3.00 3.00 3.15 3.15 2.60 3.15 2.60 2.60 3.15 2.60 3.15 3.15 3.00 3.00 3.00 3.00
3.10 3.20 3.00 3.10 3.20 3.00 3.10 3.20 3.00 3.10 3.20 3.00 3.10 3.20 3.00 3.10 3.20 3.00 3.25 3.25 2.70 3.25 2.70 2.70 3.25 2.70 3.25 3.25 3.10 3.10 3.10 3.10 3.35 3.35 2.80 3.35 2.80 2.80 3.35 2.80 3.35 3.35 3.20 3.20 3.20 3.20 3.15 3.15 2.60 3.15 2.60 2.60 3.15 2.60 3.15 3.15 3.00 3.00 3.00 3.00
3.10 3.20 3.10 3.20 3.10 3.20 3.10 3.10 3.10 3.25 3.25 2.70 3.25 2.70 2.70 3.25 2.70 3.25 3.25 3.10 3.10 3.10 3.10 3.20 3.20 3.20 3.35 3.35 2.80 3.35 2.80 2.80 3.35 2.80 3.35 3.35 3.20 3.20 3.20 3.20
0.25 0.30 0.35 0.25 0.30 0.35 0.20 0.25 0.30 0.20 0.25 0.30 4.90 5.00 5.10 4.90 5.00 5.10 4.90 5.00 5.10 4.90 5.00 5.10 4.90 5.00 5.10 4.90 5.00 5.10 4.90 5.00 5.10 4.90 5.00 5.10 0.80 BSC. 0.65 BSC. 0.50 BSC. 0.50 BSC. 0.25 - 0.25 - 0.25 - 0.25 0.30 0.40 0.50 0.45 0.55 0.65 0.45 0.55 0.65 0.30 0.40 0.50 16 4 4 WHHB 20 5 5 WHHC 28 7 7 WHHD-1 32 8 8 WHHD-2 -
** ** ** ** ** ** 0.40 ** ** ** ** ** ** ** 0.40 ** ** ** ** **
NO YES NO NO YES NO Y NO NO YES YES NO NO YES Y N NO YES NO NO
NOTES: 1. DIMENSIONING & TOLERANCING CONFORM TO ASME Y14.5M-1994. 2. ALL DIMENSIONS ARE IN MILLIMETERS. ANGLES ARE IN DEGREES. 3. N IS THE TOTAL NUMBER OF TERMINALS. 4. THE TERMINAL #1 IDENTIFIER AND TERMINAL NUMBERING CONVENTION SHALL CONFORM TO JESD 95-1 SPP-012. DETAILS OF TERMINAL #1 IDENTIFIER ARE OPTIONAL, BUT MUST BE LOCATED WITHIN THE ZONE INDICATED. THE TERMINAL #1 IDENTIFIER MAY BE EITHER A MOLD OR MARKED FEATURE.
** SEE COMMON DIMENSIONS TABLE
5. DIMENSION b APPLIES TO METALLIZED TERMINAL AND IS MEASURED BETWEEN 0.25 mm AND 0.30 mm FROM TERMINAL TIP. 6. ND AND NE REFER TO THE NUMBER OF TERMINALS ON EACH D AND E SIDE RESPECTIVELY. 7. DEPOPULATION IS POSSIBLE IN A SYMMETRICAL FASHION. 8. COPLANARITY APPLIES TO THE EXPOSED HEAT SINK SLUG AS WELL AS THE TERMINALS. 9. DRAWING CONFORMS TO JEDEC MO220, EXCEPT EXPOSED PAD DIMENSION FOR T2855-1, T2855-3 AND T2855-6. 10. WARPAGE SHALL NOT EXCEED 0.10 mm. 11. MARKING IS FOR PACKAGE ORIENTATION REFERENCE ONLY. 12. NUMBER OF LEADS SHOWN ARE FOR REFERENCE ONLY. PACKAGE OUTLINE, 16, 20, 28, 32L THIN QFN, 5x5x0.8mm
-DRAWING NOT TO SCALE-
21-0140
F
2
2
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.
16 ____________________Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600 (c) 2004 Maxim Integrated Products Printed USA is a registered trademark of Maxim Integrated Products.


▲Up To Search▲   

 
Price & Availability of MAX2039

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X